Molecular Biology, Pathobiology, and Genetics Human rRNA Gene Clusters Are Recombinational Hotspots in Cancer

نویسندگان

  • Dawn M. Stults
  • Michael W. Killen
  • Erica P. Williamson
  • Jon S. Hourigan
  • H. David Vargas
  • Susanne M. Arnold
  • Jeffrey A. Moscow
  • Andrew J. Pierce
چکیده

The gene that produces the precursor RNA transcript to the three largest structural rRNA molecules (rDNA) is present in multiple copies and organized into gene clusters. The 10 human rDNA clusters represent <0.5% of the diploid human genome but are critically important for cellular viability. Individual genes within rDNA clusters possess very high levels of sequence identity with respect to each other and are present in high local concentration, making them ideal substrates for genomic rearrangement driven by dysregulated homologous recombination. We recently developed a sensitive physical assay capable of detecting recombination-mediated genomic restructuring in the rDNA by monitoring changes in lengths of the individual clusters. To prove that this dysregulated recombination is a potential driving force of genomic instability in human cancer, we assayed the rDNA for structural rearrangements in prospectively recruited adult patients with either lung or colorectal cancer, and pediatric patients with leukemia. We find that over half of the adult solid tumors show detectable rDNA rearrangements relative to either surrounding nontumor tissue or normal peripheral blood. In contrast, we find a greatly reduced frequency of rDNA alterations in pediatric leukemia. This finding makes rDNA restructuring one of the most common chromosomal alterations in adult solid tumors, illustrates the dynamic plasticity of the human genome, and may prove to have either prognostic or predictive value in disease progression. [Cancer Res 2009;69(23):9096–104]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CRISPR/Cas9, a new approach to successful knockdown of ABCB1/P-glycoprotein and reversal of chemosensitivity in human epithelial ovarian cancer cell line

Objective(s): Multidrug resistance (MDR) is a major obstacle in the successful chemotherapy of ovarian cancer. Inhibition of P-glycoprotein (P-gp), a member of ATP-binding cassette (ABC) transporters, is a well-known strategy to overcome MDR in cancer. The aim of this study was to investigate the efficiency and ability of CRISPR/Cas9 genome editing technology to knockdown ABCB1 gene expression ...

متن کامل

Human rRNA gene clusters are recombinational hotspots in cancer.

The gene that produces the precursor RNA transcript to the three largest structural rRNA molecules (rDNA) is present in multiple copies and organized into gene clusters. The 10 human rDNA clusters represent <0.5% of the diploid human genome but are critically important for cellular viability. Individual genes within rDNA clusters possess very high levels of sequence identity with respect to eac...

متن کامل

Induction of apoptosis and necrosis in human acute erythroleukemia cells by inhibition of long non-coding RNA PVT1

Recent advances in molecular medicine have proposed new therapeutic strategies for cancer. One of the molecular research lines for the diagnosis and treatment of cancer is the use of long non-coding RNAs (LncRNAs) which are a class of non-coding RNA molecules longer than 200 base pairs in length that act as the key regulator of gene expression. Different aspects of cellular activities like cell...

متن کامل

Molecular characterization and DNA methylation profile of Libyodrilus violaceous from oil polluted soil

Studies on earthworms using molecular markers are rare in Africa except a handful from South Africa. Reports on Libyodrilus violaceous,an earthworm found in West Africaare available including their metal tolerance and bioaccumulation capacity but their molecular characterization and ecotoxicology studies are scarce. In this study, triplicate L. violaceous specimens were collec...

متن کامل

Association Study of miR-124-a-3 Gene rs34059726 Polymorphism with Prostate Cancer in Gonbad Kavous

Background: MiRNAs are one of the most important genetic regulators that regulate more than 50 percent of the human genome. MiR-124-a-3 is a tumor suppressor miRNA which its expression dramatically reduced in prostate cancer tumor cells. Since miRNA binding to the transcript of target genes by seed sequence, any mutations and changes in this region could be effective on its performance and iden...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009